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Abstract. We investigate an antiferromagnetic s = 1/2 quantum spin system with anisotropic spin ex-
change on a fractal lattice, the Sierpiński gasket. We introduce a novel approximative numerical method,
the configuration selective diagonalization (CSD) and apply this method to a the Sierpiński gasket with
N = 42. Using this and other methods we calculate ground state energies, spin gap, spin–spin correlations
and specific heat data and conclude that the s = 1/2 quantum antiferromagnet on the Sierpiński gasket
shows a disordered magnetic ground state with a very short correlation length of ξ ≈ 1 and an, albeit very
small, spin gap. This conclusion holds for Heisenberg as well a for XY exchange.

PACS. 75.10.-b General theory and models of magnetic ordering – 05.45.Df Fractals – 75.40.Mg Numerical
simulation studies

1 Introduction

Low-dimensional quantum antiferromagnets (AFM) have
been intensively investigated since the development of
quantum mechanics in the early twenties [1]. A renewed in-
terest was motivated by the discovery of high-temperature
superconductivity [2] and the peculiar interplay of the
magnetic and electronic properties of these systems, where
antiferromagnetism and superconductivity appear in close
vicinity (see e.g. [3] and Ref. therein). Since then vari-
ous experimental findings for materials for electronically
one- or twodimensional magnetic systems, such as CuGeO
CaVO, SrCuBO, have called for more detailed theoreti-
cal investigations of the ground state and the low tem-
perature properties of one- and two-dimensional quantum
AFM (see e.g. [4] and ref. therein). Despite many theoret-
ical efforts, many properties of low-dimensional quantum
AFM, in particular the interplay of quantum fluctuations
and magnetic order near quantum critical points, need
further explanation.

The radical difference in the behavior of one- and two-
dimensional AFM has been subject of current debate, in
particular with regard to its interaction with changes in
the lattice structure (in the cuprates), the presence of
spin-peierls transitions or the influence of disorder. One
of the most significant dimension-dependent properties
is the type of magnetic order: the ground state of the
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one-dimensional s = 1/2 Heisenberg chain remains disor-
dered [1], but for the two–dimensional Heisenberg quan-
tum AFM on square, triangular or honeycomb lattices
one observes a Néel-like magnetic long range order in the
ground state. The dimensional crossover between d = 1
and d = 2 has been studied via investigations of ladder
structures [5] or by varying exchange parameters on two–
dimensional lattices (e.g. on the square lattice or on the
triangular lattice) [6–12].

In addition to the dimensionality the spin anisotropy
can also influence the magnetic order in quantum AFM.
For example, it is known that in the one–dimensional lin-
ear chain an infinitesimal small Ising-like exchange aniso-
tropy induces a Néel-like magnetic order in the ground
state. In zig-zag ladders the effects of XY anisotropy may
lead to spiral ordering [13]. For two–dimensional lattices at
finite temperatures (where the Mermin-Wagner theorem
forbids any Néel–like long-range order for pure Heisenberg
exchange) an XY exchange anisotropy can induce a vortex
type ordering at the Kosterlitz-Thouless transition [14].

We have previously studied the influence of dimen-
sionality on the magnetic order by considering a quan-
tum AFM on a particular lattice geometry, the Sierpiński
gasket, with a topological dimension between one and
two. We considered a Heisenberg interaction between the
nearest-neighbor spins on this lattice and investigated its
properties with exact diagonalization and variational wave
functions [15,16]. We supplemented this analysis with
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thermodynamical properties using the quantum decima-
tion technique (QDT) [17] and a decoupled-cell Monte-
Carlo approach (DCM) [18]. Recently we extended this
research to higher spins [19] as well as to anisotropic spin
interactions [20]. From all calculated data we have pre-
sented arguments in favor of a disordered ground state of
the Sierpiński gasket quantum AFM.

All mentioned numerical approaches have some lim-
itations and disadvantages. The exact diagonalization is
subject to the well known constraint on the system size.
Its application to quantum spin models is always challeng-
ing but in the case of a fractal lattice even more compli-
cated due to loss of translational symmetries. Therefore
only small systems with N = 15 could be investigated
so far (In [20] we include a system with N = 28, which
has a similar topology like N = 15 but is in fact not
a true Sierpiński gasket). The variational wave function
calculations suffer from the uncertainties in the reference
wavefunction due to lattice frustration and the thermody-
namical properties calculated with QDT and DCM might
not probe the true ground state. Therefore all previous
conclusions have been drawn with particular care and in-
deed, especially the investigation of larger systems is very
desirable for further support and verification.

In this paper we will apply a new technique, the config-
uration selective diagonalization (CSD), in a particular ef-
ficient implementation to investigate larger finite lattices.
This approach is based on ideas developed in quantum
chemistry [21,22] and evolves around an extrapolative cal-
culation of the ground state and low excitations. Using this
approach we are able to access larger systems in a numeri-
cally controlled approximation. We will present results for
the N = 42 Sierpiński gasket (the next larger Sierpiński
gasket after N = 15) for both the Heisenberg and the
XY model. This is to our knowledge the largest quan-
tum spin system treated so far with a direct diagonaliza-
tion technique. The treatment of this cluster permits the
analysis of spin-spin correlations for larger lattice separa-
tions and allows us to further strengthen the predictions of
a disordered ground state for the Heisenberg model. It also
enables us to draw similar conclusions for the XY model
on the Sierpiński gasket.

In Section 2 we will introduce the model and its basic
properties. In Section 3 we present all numerical methods
used in our investigation. We will emphasize on the CSD in
very detail, as this is the first application of this approach
to quantum spin systems. In Section 4 the results of the
calculations will be presented and conclusions about the
magnetic order behavior will be made. We summarize the
paper in Section 5.

2 The model

We consider the quantum s = 1/2 AFM with anisotropic
spin exchange:

Ĥ = J
∑
〈i,j〉

(
Sx

i S
x
j + Sy

i S
y
j + ∆Sz

i S
z
j

)
. (1)
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Fig. 1. Left: The classical ground state configuration of the
N = 15 Sierpiński gasket with 3 sublattices: A (circles),
B (squares) and C (triangle). Right: The spin direction in the
classical ground state with an angle of 120◦ between spins be-
longing to different sublattices.

The antiferromagnetic spin exchange J > 0 is taken be-
tween nearest neighbors on the Sierpiński gasket (an ex-
ample of this lattice with N = 15 is given in Fig. 1). The
anisotropy ∆ will be studied for the Heisenberg model at
∆ = 1 and for the XY model at ∆ = 0. The most im-
portant geometrical property of the Sierpiński gasket is
its fractal Hausdorff dimension of df = ln(3)

ln(2) ≈ 1.58. The
number of spins on this lattice is given by N = 1

2 (3n + 3)
with n = 1, 2, 3, . . .. In the paper we will focus on N = 6,
15 and 42 (i.e. n = 2, 3, 4).

The classical ground state is a planar spin state with
3 sublattices for ∆ ≤ 1. The spins in such a sublattice are
ferromagnetically aligned, between spins belonging to dif-
ferent sublattices we observe an angle of 120◦. This ground
state is depicted by the arrows in the right part of Fig-
ure 1. The classical ground state of the Sierpiński gasket
is analogous to the ground state of the two–dimensional
triangular lattice and has no non-trivial degeneracy.

We would like to mention here that there is an ongoing
debate of the relation between the properties of the clas-
sical ground state and the magnetic order of the quantum
ground state. For the kagomé lattice it was argued in [23]
that the infinite degeneracy of the classical ground state is
closely connected to the high number of low-lying singlets
in the quantum case (and therefore maybe to a liquid-
like quantum ground state.) Ongoing research did show
that there are systems like the planar pyrochlore lattice
with a classical non-trivial degeneracy of the ground state,
yet with valence bond type long range order in the quan-
tum regime [24]. The multi-spin exchange model is another
counter example with no non-trivial classical degeneracy
but with a large number of low lying singlets [25]. As it has
been discussed already in [19] the Sierpiński gasket is yet
another example as it has no non-trivial classical degener-
acy, even though in the quantum case it also shows a large
number of low-lying singlets and a disordered liquid-like
ground state.
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3 The methods

In this paper we will use a variety of methods to inves-
tigate the Sierpiński gasket. For finite quantum AFM of
small size the exact diagonalization (ED) with a Lanczos
approach is the tool of choice to investigate the ground
state and the low energy spectrum. Because of the expo-
nentially growing Hilbert space the approach is usually
limited to systems with up to N = 36, only for highly
symmetric lattices like the square lattice one can reach
N = 40 [26,27]. As already stated the CSD will be used
for the calculation of the ground state and first excited
state of the N = 42 Sierpiński gasket. For thermodynamic
properties we will deploy a complete diagonalization (CD)
for smaller finite systems and a quantum decimation tech-
nique (QDT).

Whereas the complete diagonalization is routinely used
(for more information see e.g. [28]), the QDT is not known
to a wide audience even though it has been successfully im-
plemented to investigate low-temperature thermodynam-
ics of different low–dimensional AFM [29,30]. Therefore
we will shortly describe the two basic steps of this ap-
proach on the example of the Sierpiński gasket. In the
first step, one splits the Hamiltonian H of an infinite sys-
tem into Hamiltonians Hi of finite 6-spin subsystems (see
right part of Fig. 1) (H =

∑
i Hi). Recalling that the

renormalization group (RG) procedure should preserve
the partition function and symmetry of the system and,
additionally, the decimation procedure should preserve the
correlation function, one traces out some spin degrees of
freedom in each finite subsystem. In the second step one
puts these finite subsystems together and obtains a renor-
malized Hamiltonian H ′:

exp
(∑

i

Hi

)
≈
∏

i

exp(Hi)

≈
∏

i

exp(H ′
i) ≈ exp

(∑
i

H ′
i

)
.

Note that while splitting the Hamiltonian into finite sub-
systems and subsequently replacing the true local Hamil-
tonian by the renormalized H ′

i one neglects the non-com-
mutativity of the spin operators.

This two-step RG transformation enables one to cal-
culate the free energy per spin as follows:

−f/kBT =
∞∑

i=0

(
1
3

)i

g(K(i)), (2)

with K(i) representing the i-times transformed coupling
constant K ≡ J/kBT (kB – Boltzmann constant and T –
temperature). The g in the above equation represents the
contribution to the free energy (per spin) from degrees of
freedom which have been decimated out in one RG trans-
formation. For additional details of this method see for
e.g. [17,30].

As already stated the CSD will be used for the first
time for quantum spin systems and we therefore describe
it now in very detail.

Fig. 2. 42 Site approximant of the Sierpiński gasket. If the sites
indicated by black circles are treated as a central fragment,
the remainder of the system decomposes into three uncoupled
thirteen-site satellite fragments.

3.1 Configuration selective diagonalization

As noted above exact diagonalization methods are limited
to small systems because of an the exponential increase of
the Hilbert space with the system size. In certain circum-
stances, however, the size of treatable systems may be in-
creased significantly if only approximate energies and ex-
pectation values are required. Here we describe the adap-
tation of the CSD for the approximative calculation of
low-energy properties of quantum spin systems in the con-
text of the N = 42 Sierpiński gasket. This approach has
been developed using the methodology recently applied in
the multi-configuration interaction methods [22,31,32] in
quantum chemistry. In the following, we will describe this
method and its implementation for the system at hand,
but note that it is applicable to other systems as well.
The division of the whole system into fragments which
are exactly solvable within an exact Lanczos diagonaliza-
tion is a necessary precondition for the application of the
CSD, as discussed in detail below.

The model in Figure 2 contains 42 sites, resulting in
a Hilbert space of dimension 5.3 × 1011 in the Stot

z = 0
subspace, which can be reduced by a factor of approxi-
mately four by discrete Abelian symmetries, such as spin-
and real-space reflection. The use of the three-fold rota-
tion incurs too much computational overhead to be of
real value. Even so, it remains too large for exact diag-
onalization schemes for low-lying eigenstates. The special
structure of the cluster permits the use of approximate
configuration-selective diagonalization methods. If we sub-
divide the cluster into a central fragment containing the
three sites indicated with black dots, its remainder con-
sists of three identical “satellite” fragments of 13 sites
each. If there were no bonds between the central frag-
ment and the satellites, the eigenstates of the overall sys-
tem would be outer products of the eigenstates of the four
fragments. In the presence of interactions, only four bonds
couple the central fragment with each of the satellites,
which may be assumed to perturb the spectrum of the
satellites only weakly. Because the satellite fragments are
only weakly coupled to the central system, it is plausible
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to expand the eigenstate of the overall system in a basis of
outer products of eigenstates of the satellite fragments. In
the absence of any coupling to the central fragment, this
approximation would be exact, in their presence one can
hope that only a few configuration in this expansion will
carry the overwhelming weight of the wavefunction. This
observation suggests the application of the CSD (which
has a long history in similar scenarios in quantum chem-
istry [21,33]) to quantum spin systems.

The basic idea of this approach is simple: Suppose an
approximate wavefunction of the ground state is already
known and this wavefunction has nonzero coefficients only
for a small fraction of the configurations of the Hilbert
space. We then estimate the weight of each remaining un-
selected configuration in second order perturbation the-
ory. We keep only such configurations where the absolute
value of the estimated coefficient surpasses a predefined
threshold ε and sum the perturbative energy contribu-
tions of the neglected configurations. Next we determine
the eigenstate within the new selected Hilbert space with
a direct diagonalization technique. The resulting state will
be a better approximation of the desired eigenstate in the
full Hilbert space. These two steps are alternated with
decreasing selection threshold ε and the energy (includ-
ing the perturbative correction of the discarded config-
urations) and other expectation values are extrapolated
to the limit ε → 0. For many systems this limit can be
safely extrapolated with selected Hilbert spaces that con-
tain only a small fraction of the possible configurations.
The process is initiated with some simple trial wavefunc-
tion containing only the appropriate ground-state config-
urations of the segments.

The algorithm thus consists of two distinct phases: in
the expansion step new configurations are selected per-
turbatively and in the diagonalization step the lowest (or
a few of the lowest) eigenvalues of the selected Hilbert
space are determined. In the diagonalization step we iter-
atively improve a trial vector for the ground state of the
selected Hilbert space using a preconditioned Davidson
method [34,35]. The time-consuming step of this iter-
ative method is the computation of expectation values
〈Ψi|H |Ψj〉 of the many body Hamiltonian H between trial
states

|Ψi〉 =
∑

k

αik |φk〉 , (3)

where |φk〉 designate the configurations of the selected
Hilbert space. The evaluation of such matrix elements is
difficult, because at any given stage, the selected Hilbert
space contains an essentially random subset of the possible
configurations.

The Hamilton operator H of the system can be writ-
ten as

H = Hc +
∑

s

Hs +
∑

s

Hsc (4)

where s enumerates the satellite fragments and c desig-
nates the central fragment. Hs and Hc sum terms of H
acting on a single fragment, while Hsc couples the satel-
lite s to the central fragment.

To evaluate the expectation values we pre-diagonalize
the 13-site satellite fragments in their respective Stot

z spin-
segments and compute the boundary-operators S±

sb and
Sz

sb for the four boundary sites b of each fragment s in
this basis. Similarly we compute the matrix representation
of the corresponding operators for the central fragment.
Each configuration |φk〉 in the Hilbert space is labeled by
a quadruplet of quantum numbers (nc, n1, n2, n3), where
ni is the index of an eigenstate of the corresponding frag-
ment. The first two terms in the Hamiltonian (4) are di-
agonal in this representation and easily evaluated.

Nondiagonal terms, in contrast, are difficult to evalu-
ate because of the sparsity of the selected configurations in
the overall Hilbert space. In order to avoid costly lookup
operations we have developed a so-called residue based
scheme for the evaluation of the matrix elements that we
will describe in detail in the following. Each coupling term
Hsc is a sum of products of pairs of boundary operators
described above. To efficiently evaluate the expectation
values of this part of the Hamiltonian we use a residue
based matrix element evaluation technique that was orig-
inally developed for selecting configurations in interaction
methods [22,31].

For a particular configuration of the selected Hilbert
space one individual term in Hcs changes the quantum
numbers on the central fragment and on one of the satel-
lite fragments (in the following we choose without loss
of generality fragment 1). The quantum numbers on the
other two fragments n2, n3 are the same on the right-
and left-hand side of the configuration for nonzero ma-
trix elements. All all nonzero contributions arising from
this particular term in the Hamiltonian connect two con-
figurations which have the same index n2, n3. Since we
wish to enumerate all nonzero matrix elements, we can
use this set as a label for the associated matrix elements.
In the following we will call this set of quantum numbers of
both configurations the transition residue (R) mediating
the matrix element. For each transition residue (n2, n3)
we can enumerate the configurations that lead to nonzero
matrix elements by a doubly nested residue tree.

All nonzero matrix elements mediated by a particular
transition residue R are uniquely enumerated by pairs of
indices of the first level and pairs of indices of the sec-
ond level of the residue tree R. There are no matrix ele-
ments spanning different residue trees. As an example the
matrix element evaluation for Hsc = S+

c S−
1 can thus be

written as:

〈Ψ1|Hcs|Ψ2〉 =
∑

R=(n2,n3)

∑
c1,c2in Tree R

S+
c1c2


 ∑

s1in list (R,c1)

∑
s2in list (R,c2)

A
(1)∗
(R,c1,s1)S

−
s1s2

A
(2)
(R,c2,s2)


 . (5)

In order to carry out the sums in the above equation,
we construct a residue tree for each R = (n2, n3), which is
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��
��
��
��

��
��
��
��

C6

C5

C4

C3

C1

C2

.......k(R,C1,S2)

n2 n3

n1 k(R,C1,S1) n2

Fig. 3. A single entry R in the residue tree (top left) is desig-
nated by the quantum numbers of the fragment not changed by
the operator in question (see text, (n2, n3) in the example). The
first level labels the quantum number of the central fragment
that is necessary to completely specify the state. Attached to
each such entry ci is the list of indices of the configurations
that have quantum numbers (ci, . . . , n2, n3). Each element of
such a list contains the quantum number n1 of the configura-
tion and its associated index of the coefficient of the associated
configurations k(R, ci, s).

illustrated schematically in Figure 3. The first level of the
tree enumerates the allowed quantum numbers of the cen-
tral fragment (nc = c1, c2, c3, . . . ). The second level of the
tree enumerates for each central fragment quantum num-
ber the selected configurations (ci, sj , n2, n3) and contains
the value of the coefficient of the associated configuration:
A(R = (n2, n3), ci, sj , ). The sum in equation (5) is then
computed by picking all allowed pairs of branches cj , cj

of the tree. For each pair of branches, each pair of en-
tries generates a nonzero matrix element. This double sum
can thus be performed without further lookup operations
and evaluates nevertheless only matrix elements that con-
nect selected configurations. Note that the innermost loops
run over all selected indices on the satellites, i.e. encode
O(N2

s ) operations for a fully selected Hilbert space, where
Ns ≈ 1000 is the dimension of the Hilbert space on a
satellite fragment. In order to build the tree just once for
many applications of the Hamiltonian, it is more efficient
to store the indices k(R, c2, s2) rather than the coefficients
in the tree.

Using this procedure all matrix elements can be
evaluated for arbitrarily complicated subspaces without
lookup operations. We have implemented the residue tree
by nested Adelson-Vleski-Landes (AVL) balanced binary
trees which permit O(log(N)) read/write operations per
access. The numerical effort associated with building the
residue tree is then proportional to the number of con-
figurations. The number of matrix elements encoded by
the tree, however is proportional to the expectation value
of the square of the lengths of the inner subtrees, i.e. the
inner sum in equation (5). This sum scales with the num-
ber of configurations on a satellite fragment (O(N2

s ) for
the fully selected case. As a result this matrix evaluation

scheme is very efficient, in tests the expectation values
were computed 200 times faster than with a traditional
hash-table based implementation. This increase in the nu-
merical efficiency permits the treatment of much larger
Hilbert spaces.

Since the different residue trees are independent of one
another, we can implement a relatively simple, scalable
parallelization of the matrix element evaluation on a lim-
ited number of nodes, by distributing the residue trees
across the nodes. In our implementation using 8 nodes of
an SGI Power Challenge incurred a total loss of about 12%
of CPU time compared with a run on a single node. This
loss of efficiency results from the fact that the number of
matrix elements encoded by a given residue tree depends
on the number of configurations containing its residue
quantum numbers.

In the expansion step for a given reference state |Ψ〉
we diagonalize ( 〈Ψ |H |Ψ〉 〈Ψ |H |φi〉

〈φi|H |Ψ〉 〈φi|H |φi〉

)
(6)

for each trial configuration |φi〉 and use its coefficient for
the selection criterion. If the new configurations |φi〉 were
mutually non-interacting this would generate the exact
eigenstate of the system. The time consuming step in the
diagonalization of equation (6) is the computation of the
off-diagonal coupling matrix element 〈φi|H |Ψ〉 between
the reference state and the trial configuration, which can
be accomplished using a similar residue based scheme as
for the evaluation of the matrix elements. Initially we
choose a small subset of configurations with the lowest
energies which is diagonalized exactly. The lowest eigen-
state of this Hilbert space is used as the reference state for
the first iteration, for subsequent iterations the converged
state of the previous iteration is used.

For the present system, however, it is not feasible
to even consider all possible trial configurations (N =
O (1011)) in the expansion loop. In each expansion step
we therefore proceed as follows: first we order the config-
urations of the last state by the absolute weight of their
coefficients. We then generate the interacting configura-
tions for the most important configurations until the total
weight of the configurations considered in the reference
state exceeds about 90% of its norm. Interacting config-
urations of a given configuration are all those that have
a nonzero matrix element with the Hilbert space of the
selected configurations. These are typically only a small
fraction (about 1−3%) of the selected configurations. For
these configurations we apply the selection criteria and
gather the selected subset containing n1 new configura-
tions. We then generate the interacting configurations of
the next important segment of the reference state un-
til to total weight of the configurations of the reference
state exceeds 96% of its norm and generate n2 new con-
figurations from this set. We continue this process with
geometrically decreasing fraction of the norm until the
number of newly generated configurations nk is less than
5% of the total number of newly generated configurations
n1 + n2 + · · ·+ nk−1. Since configurations with very little
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Fig. 4. Convergence of the energy as a function of the selection
threshold.

weight in the original wavefunction are unlikely to gen-
erate interacting configurations that will be selected we
avoid to even build the full interacting space of the refer-
ence wavefunction.

Figure 4 illustrates the convergence of the ground state
energy with respect to the selection threshold for the sys-
tem at hand. It demonstrates that for selection thresholds
less then 1 × 10−5 the energy is extrapolated with an ac-
curacy of one percent or better.

Expectation values, such as correlation functions can
be easily computed by adapting the residue driven scheme.
One constructs residue trees corresponding to the appro-
priate operators and evaluates the expectation values sim-
ilar to the energy.

4 Results

4.1 Spin-spin correlations

We turn now to the investigation of the ground state mag-
netic order on the quantum s = 1/2 antiferromagnetic
Sierpiński gasket. The careful investigation of the spin–
spin correlations 〈SiSj〉 will provide a deeper insight into
the ordering behavior.

We begin with the ground state energy (being just the
sum over all nearest-neighbor spin–spin correlations on the
Sierpiński gasket). In the following table we provide the
calculated value of the ground state energy for all finite
lattices up to N = 42. We provide the site and the bond
average energies (This might help other groups to compare
to our data.)

In a quantum spin system with Néel-like semi-classical
ordering the spin–spin correlation between the spins in one
classical sublattice remains constant for large distances af-
ter a slight decay due to the quantum fluctuations. There-
fore we first investigate the spin–spin correlations between
the spins of one classical sublattice as defined in Section 2
(for example all sites with circles • in Fig. 1).

The geometrical distance, which is normally the mea-
sure on one- or two-dimensional lattices, is not easily

Table 1. Number of spins N , site energy es and bond energy
eb for the Sierpiński gaskets up to N = 42. (For N = 42 the
error of the CSD calculation is given in brackets.)

N Heisenberg XY

es eb es eb

6 −0.375 −0.25 −0.25 −0.166666̄
15 −0.416125 −0.231181 −0.282024 −0.156680
42 −0.439(5) −0.227(9) −0.298(8) −0.154(9)

transferable to fractal objects, such as the Sierpiński gas-
ket. For the Sierpiński gasket we therefore use the Man-
hattan distance rM which counts the minimal number of
steps required to connect one site to the other. Because of
lack of translational symmetry in the Sierpiński gasket we
find different spin–spin correlations between spins having
the same Manhattan distance. In what follows we use a
simple averaging procedure over all spin–spin correlations
at a given Manhattan distance.

In our earlier investigations we predicted a disordered
ground state using the exact diagonalization data for
N = 15 among others. Below we will compare this data
with the new data for N = 42 to confirm our predic-
tion. In Figure 5 the spin–spin correlation 〈SiSj〉i,j∈• for
the Sierpiński gasket (SG) with N = 42 and correspond-
ing data for a two-dimensional square lattice (SL) with
N = 40 [26,27] (where magnetic long-range order is well
known to exist) is shown. For the SL data we have cho-
sen the shell distance rS (where shell-like circles num-
bered 1,2,3, . . . are drawn around a given site which then
connect all neighbors at the given distance).

The Sierpiński gasket shows a dramatic drop in the
spin–spin correlations and for large distances it even
changes its sign. This is in marked contrast to the two-
dimensional square lattice where after a slight decrease
due to the quantum fluctuations an almost constant be-
havior over distance is observed. This points to a complete
loss of the classical Néel-like magnetic order in the quan-
tum Heisenberg AFM on the Sierpiński gasket. Almost
the same behavior can be seen for the XY model with
∆ = 0. Here we have to distinguish between the different
components of the spin–spin correlation due to the spin
anisotropy: 〈Sx

i Sx
j 〉 = 〈Sy

i Sy
j 〉 �= 〈Sz

i Sz
j 〉. But as one can

see the different components of the spin–spin correlations
show similar behavior and the complete loss of any classi-
cal Néel-like magnetic order.

Even though the classical magnetic order seems to be
absent, some other type of long-range order in the pair cor-
relations might prevail in the Sierpiński gasket. In order to
check this conjecture we calculate the absolute spin–spin
correlation |〈SiSj〉|i,j∈N between all spins (and not just
between spins in a classical sublattices) over rM (again us-
ing an averaging procedure as described above) and show
a semilogarithmic plot of the data.

From Figure 6 we deduce that only very short ranged
correlations exist at all in the Sierpiński gasket and this
behavior is independent of the spin anisotropy. For the
XY model (right) we observe again a similar behavior
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for the different components of the spin–spin correlation.
From the semilogarithmic plot we derive a correlation
length ξ ≈ 1, applying |〈SiSj〉| ∼ e−(rM /ξ). The very small
(in absolute values) upturn of the spin–spin correlations
for the largest separation is presumably a boundary effect
of the corner spins of the Sierpiński gasket. These corner
spins have a different coordination number (only 2 bonds
instead of 4) and they are mainly contributing to the value
of this particular spin–spin correlation.

As we observe only short range order in the Sierpiński
gasket, we turn to the investigation of the local order
which might exist in this lattice. We show in Figure 7
the spin–spin correlations on the Sierpiński gasket bonds
only and chose 〈Sz

i Sz
j 〉 (Heisenberg case) and 〈Sx

i Sx
j 〉

(XY case). The other components behave quite similar.
We observe in the Heisenberg case (left) as well as in

the XY case (right) a tendency to a plaquette formation
at the corner spins. An example of such a plaquette is seen
between the spins 39-40-42-41. Here the spin–spin correla-
tions are very pronounced between the neighbor spins on
the assumed plaquette (and reach about 80% of the true
isolated plaquette value as we have checked) and they are

apparently much smaller to the remaining lattice (where
for an isolated plaquette we would observe 0). And even
though there is an antiferromagnetic bond between the
spins 40 and 41, the resulting spin–spin correlation be-
tween this two spins is ferromagnetic which points to a be-
ginning dimer formation between them. The other dimer
correlation 〈S39S42〉 (value not shown in Fig. 7) is 0.234
(Heisenberg case) and 0.230 (XY case) and therefore very
close to a true dimer correlation of 1/4. One could argue
that another plaquette may form inside the lattice (one
example might be spins 30-31-34-33). We have found a
similar behavior already for the N = 15 Sierpiński gasket.
The building of plaquettes in a lattice with strong frus-
tration seems quite interesting given the fact that in the
strong frustrated region of the J1−J2 square lattice model
one might find a similar behavior (although this behavior
is still under controversial discussion) [36–38].

4.2 Spin gap

In this section we investigate the spin gap Γ , defined as

Γ = E(Sz
min + 1) − E(Sz

min). (7)
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The absence of Néel–like magnetic long-range order is as
a rule accompanied by a finite spin gap and can there-
fore be used as another criterion for a disordered ground
state [39]. In Figure 8 we present Γ for the Heisenberg and
XY case.

The data for N = 6 and 15 has been presented before
but with the CSD we are able to calculate the spin gap
for N = 42 as well. The data has to be analyzed with par-
ticular care, because we expect finite size effects still to
be present. If we just make a simple linear fit through the
data we roughly get a value Γ ≈ 0.2. One might also argue
that N = 6 is too small to be taken into account for this
consideration and therefore we did another fit with only
N = 15 and 42. Still we see that the spin gap Γ remains fi-
nite, but is reduced to Γ ≈ 0.1. A similar conclusion holds
for the XY model, although the spin gap appears to be
smaller (this behavior has been found in other investiga-
tions too [40]). Though our finite-size extrapolation must
be taken with particular care we see further arguments
in favor of a finite spin gap and a ground state without
magnetic long–range order.

We mention that the AFM on the Sierpiński gas-
ket belongs to the class of frustrated spin systems (like
the kagomé or the checkerboard lattices) having exactly
known localized magnon eigenstates leading to a macro-
scopic magnetization jump to saturation [41,42]. These
localized magnons can live e.g. on ‘hexagons’ (large trian-
gles) inside satellite fragment (e.g. the sites 4,5,6,12,11,8
in Fig. 7). For N = 42 the magnetization jumps at the
saturation field hsat = 3J from m = 17/21 to saturation
m = 1. Even for N → ∞ the height of the jump remains
finite since the number of localized magnons occupying
the lattice grows with N .

4.3 Low temperature thermodynamics

It is known that the low-temperature specific heat is
closely related to the low-lying excitations of a sys-
tem [4,43–45]. As we have argued already in Section 4.2
the low-lying excitations in turn might show a spin gap be-
havior and therefore point to a disordered ground state.
We and others have seen in previous investigations a close
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connection between an additional low-temperature peak
in the specific heat and a finite spin gap [18,44,46,47].
Following this argumentation we will analyze the specific
heat cv of the system especially in its low-temperature re-
gion. We show in Figure 9 cv for the Heisenberg and XY
Sierpiński gasket calculated with CD and QDT. We note
that the cv results for the Heisenberg case are identical to
those of reference [17] and shown for comparison purposes.

We observe in both cases additional low-temperature
peaks which relate to two different energy scales relevant
in the system. The first energy scale is connected to the
typical broad peak, whereas the second one is connected
to the low-temperature peak and its value is connected
to the finite spin gap Γ∞. This behavior of the specific
heat is typical for all antiferromagnetic systems on “corner
sharing triangles” lattices (kagomé [44], Sierpiński [17],
squagome [30]). In fact, in all those systems the basic
unit leading to this behavior is a ∆-chain [46,47] which
shares spins with other ∆-chains. (kagomé – 12 spin chain,
Sierpiński – 6 spin chain, squagome – 8 spin chain). The
RG transformation used here takes into account the ex-
citation spectrum of 6 spin chain (Fig. 1, right) and by
using equation (2) one gets a larger low-temperature peak
in comparison to exact diagonalization data.

In both cases an additional low-temperature peak in
the specific heat constitutes an additional argument for a
finite spin gap and therefore for a disordered ground state.
The small additional peak in the exact diagonalization
data at even lower temperatures has been attributed to a
finite size effect [19].

5 Summary

We have carried out a numerical investigation of a s = 1/2
quantum antiferromagnet on the Sierpiński gasket with
two types of spin exchange, Heisenberg and XY. We
have used the exact diagonalization, a newly implemented
configuration selective diagonalization approach and a
quantum decimation technique to calculate the spin–spin

correlations in the ground state, the spin gap and the low-
temperature specific heat.

The current investigation complements and verifies
previous work done for the Sierpiński gasket [15–20]. Main
progress in the investigation of this fractal many-body sys-
tem results from the successful introduction of the config-
uration selective diagonalization (CSD). This new method
permits the calculation of the ground state wavefunction
(and therefore all correlation functions) and excited states
as well for larger finite quantum spin system. Using CSD
we calculated the spin–spin correlations and the spin gap
for N = 42. We note that the method can be applied to
other frustrated low–dimensional quantum spin systems
with just moderate changes.

The reported data suggest that the ground state of the
Sierpiński gasket remains disordered for Heisenberg and
XY spin exchange. It seems that the interplay of quantum
fluctuations and low dimension prevents any kind of mag-
netic long range order in this system. From the available
data we derive a magnetic correlation length ξ ≈ 1. The
nearest-neighbor spin–spin correlations show a tendency
to plaquette formation. It will be interesting to find out
whether or not this behavior is related to similar findings
in the strongly frustrated region of the J1−J2 Heisenberg
antiferromagnet.
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